/* Edge Impulse ingestion SDK
* Copyright (c) 2022 EdgeImpulse Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/* Includes ---------------------------------------------------------------- */
#include <investigation2FINAL_inferencing.h>
#include <Arduino_LSM9DS1.h> //Click here to get the library: http://librarymanager/All#Arduino_LSM9DS1
#include <Arduino_LPS22HB.h> //Click here to get the library: http://librarymanager/All#Arduino_LPS22HB
#include <Arduino_HTS221.h> //Click here to get the library: http://librarymanager/All#Arduino_HTS221
#include <Arduino_APDS9960.h> //Click here to get the library: http://librarymanager/All#Arduino_APDS9960
enum sensor_status {
NOT_USED = -1,
NOT_INIT,
INIT,
SAMPLED
};
/** Struct to link sensor axis name to sensor value function */
typedef struct{
const char *name;
float *value;
uint8_t (*poll_sensor)(void);
bool (*init_sensor)(void);
sensor_status status;
} eiSensors;
/* Constant defines -------------------------------------------------------- */
#define CONVERT_G_TO_MS2 9.80665f
#define MAX_ACCEPTED_RANGE 2.0f // starting 03/2022, models are generated setting range to +-2,
// but this example use Arudino library which set range to +-4g.
// If you are using an older model, ignore this value and use 4.0f instead
/** Number sensor axes used */
#define N_SENSORS 18
/* Forward declarations ------------------------------------------------------- */
float ei_get_sign(float number);
bool init_IMU(void);
bool init_HTS(void);
bool init_BARO(void);
bool init_APDS(void);
uint8_t poll_acc(void);
uint8_t poll_gyr(void);
uint8_t poll_mag(void);
uint8_t poll_HTS(void);
uint8_t poll_BARO(void);
uint8_t poll_APDS_color(void);
/* Private variables ------------------------------------------------------- */
static const bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal
static float data[N_SENSORS];
static bool ei_connect_fusion_list(const char *input_list);
static int8_t fusion_sensors[N_SENSORS];
static int fusion_ix = 0;
/** Used sensors value function connected to label name */
eiSensors sensors[] =
{
"accX", &data[0], &poll_acc, &init_IMU, NOT_USED,
"accY", &data[1], &poll_acc, &init_IMU, NOT_USED,
"accZ", &data[2], &poll_acc, &init_IMU, NOT_USED,
"gyrX", &data[3], &poll_gyr, &init_IMU, NOT_USED,
"gyrY", &data[4], &poll_gyr, &init_IMU, NOT_USED,
"gyrZ", &data[5], &poll_gyr, &init_IMU, NOT_USED,
"magX", &data[6], &poll_mag, &init_IMU, NOT_USED,
"magY", &data[7], &poll_mag, &init_IMU, NOT_USED,
"magZ", &data[8], &poll_mag, &init_IMU, NOT_USED,
"temperature", &data[9], &poll_HTS, &init_HTS, NOT_USED,
"humidity", &data[10], &poll_HTS, &init_HTS, NOT_USED,
"pressure", &data[11], &poll_BARO, &init_BARO, NOT_USED,
"red", &data[12], &poll_APDS_color, &init_APDS, NOT_USED,
"green", &data[13], &poll_APDS_color, &init_APDS, NOT_USED,
"blue", &data[14], &poll_APDS_color, &init_APDS, NOT_USED,
};
/**
* @brief Arduino setup function
*/
void setup()
{
/* Init serial */
Serial.begin(115200);
// comment out the below line to cancel the wait for USB connection (needed for native USB)
while (!Serial);
Serial.println("Edge Impulse Sensor Fusion Inference\r\n");
/* Connect used sensors */
if(ei_connect_fusion_list(EI_CLASSIFIER_FUSION_AXES_STRING) == false) {
ei_printf("ERR: Errors in sensor list detected\r\n");
return;
}
/* Init & start sensors */
for(int i = 0; i < fusion_ix; i++) {
if (sensors[fusion_sensors[i]].status == NOT_INIT) {
sensors[fusion_sensors[i]].status = (sensor_status)sensors[fusion_sensors[i]].init_sensor();
if (!sensors[fusion_sensors[i]].status) {
ei_printf("%s axis sensor initialization failed.\r\n", sensors[fusion_sensors[i]].name);
}
else {
ei_printf("%s axis sensor initialization successful.\r\n", sensors[fusion_sensors[i]].name);
}
}
}
}
/**
* @brief Get data and run inferencing
*/
void loop()
{
ei_printf("\nStarting inferencing in 2 seconds...\r\n");
delay(2000);
if (EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME != fusion_ix) {
ei_printf("ERR: Sensors don't match the sensors required in the model\r\n"
"Following sensors are required: %s\r\n", EI_CLASSIFIER_FUSION_AXES_STRING);
return;
}
ei_printf("Sampling...\r\n");
// Allocate a buffer here for the values we'll read from the sensor
float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = { 0 };
for (size_t ix = 0; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix += EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME) {
// Determine the next tick (and then sleep later)
int64_t next_tick = (int64_t)micros() + ((int64_t)EI_CLASSIFIER_INTERVAL_MS * 1000);
for(int i = 0; i < fusion_ix; i++) {
if (sensors[fusion_sensors[i]].status == INIT) {
sensors[fusion_sensors[i]].poll_sensor();
sensors[fusion_sensors[i]].status = SAMPLED;
}
if (sensors[fusion_sensors[i]].status == SAMPLED) {
buffer[ix + i] = *sensors[fusion_sensors[i]].value;
sensors[fusion_sensors[i]].status = INIT;
}
}
int64_t wait_time = next_tick - (int64_t)micros();
if(wait_time > 0) {
delayMicroseconds(wait_time);
}
}
// Turn the raw buffer in a signal which we can the classify
signal_t signal;
int err = numpy::signal_from_buffer(buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
if (err != 0) {
ei_printf("ERR:(%d)\r\n", err);
return;
}
// Run the classifier
ei_impulse_result_t result = { 0 };
err = run_classifier(&signal, &result, debug_nn);
if (err != EI_IMPULSE_OK) {
ei_printf("ERR:(%d)\r\n", err);
return;
}
// print the predictions
ei_printf("Predictions (DSP: %d ms., Classification: %d ms., Anomaly: %d ms.):\r\n",
result.timing.dsp, result.timing.classification, result.timing.anomaly);
for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
ei_printf("%s: %.5f\r\n", result.classification[ix].label, result.classification[ix].value);
}
#if EI_CLASSIFIER_HAS_ANOMALY == 1
ei_printf(" anomaly score: %.3f\r\n", result.anomaly);
#endif
}
#if !defined(EI_CLASSIFIER_SENSOR) || (EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_FUSION && EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_ACCELEROMETER)
#error "Invalid model for current sensor"
#endif
/**
* @brief Go through sensor list to find matching axis name
*
* @param axis_name
* @return int8_t index in sensor list, -1 if axis name is not found
*/
static int8_t ei_find_axis(char *axis_name)
{
int ix;
for(ix = 0; ix < N_SENSORS; ix++) {
if(strstr(axis_name, sensors[ix].name)) {
return ix;
}
}
return -1;
}
/**
* @brief Check if requested input list is valid sensor fusion, create sensor buffer
*
* @param[in] input_list Axes list to sample (ie. "accX + gyrY + magZ")
* @retval false if invalid sensor_list
*/
static bool ei_connect_fusion_list(const char *input_list)
{
char *buff;
bool is_fusion = false;
/* Copy const string in heap mem */
char *input_string = (char *)ei_malloc(strlen(input_list) + 1);
if (input_string == NULL) {
return false;
}
memset(input_string, 0, strlen(input_list) + 1);
strncpy(input_string, input_list, strlen(input_list));
/* Clear fusion sensor list */
memset(fusion_sensors, 0, N_SENSORS);
fusion_ix = 0;
buff = strtok(input_string, "+");
while (buff != NULL) { /* Run through buffer */
int8_t found_axis = 0;
is_fusion = false;
found_axis = ei_find_axis(buff);
if(found_axis >= 0) {
if(fusion_ix < N_SENSORS) {
fusion_sensors[fusion_ix++] = found_axis;
sensors[found_axis].status = NOT_INIT;
}
is_fusion = true;
}
buff = strtok(NULL, "+ ");
}
ei_free(input_string);
return is_fusion;
}
/**
* @brief Return the sign of the number
*
* @param number
* @return int 1 if positive (or 0) -1 if negative
*/
float ei_get_sign(float number) {
return (number >= 0.0) ? 1.0 : -1.0;
}
bool init_IMU(void) {
static bool init_status = false;
if (!init_status) {
init_status = IMU.begin();
}
return init_status;
}
bool init_APDS(void) {
static bool init_status = false;
if (!init_status) {
init_status = APDS.begin();
}
return init_status;
}
uint8_t poll_APDS_color(void) {
int temp_data[4];
if (APDS.colorAvailable()) {
APDS.readColor(temp_data[0], temp_data[1], temp_data[2], temp_data[3]);
data[12] = temp_data[0];
data[13] = temp_data[1];
data[14] = temp_data[2];
data[15] = temp_data[3];
}
}
Click to Expand
Content Rating
Is this a good/useful/informative piece of content to include in the project? Have your say!
You must login before you can post a comment. .