Process:
During the brainstorming phase, we established that the lights would possess two distinct modes, one for when people were present and the other for when they were not. In the absence of people, the lights would flash in a particular sequence, whereas they would remain dormant when people were present. We assigned three unique characteristics to each light: curiosity, sleepiness, and anger. Using these attributes as a foundation, we conceptualized different scenarios for the lights' interactions, such as the sleepy light requiring physical contact to awaken, and the angry light flashing intensely when touched.
To identify the presence of people in the space, we conducted tests with UWB sensors. With Zhenfang's assistance, Chang set up the sensors to detect motion inside the room. One of us carried the sensor and moved throughout the space while another monitored the xyz parameters with an Arduino. We experimented with various thresholds of xy parameters to detect people's presence and identified the optimal xy parameters for the project.
The flashing patterns of the lights were crucial to the project's success. Initially, we attempted various flashing patterns, but none conveyed a sense of dialogue. Clover suggested using Morse code, which turned out to be an excellent idea. By translating the rhythm of Morse code into the lighting patterns and introducing a specific delay between each light, we achieved a sequential pattern of lights shining one after the other, simulating whispering. Each light required a distinct control mechanism, such as a relay for the IKEA desk lamp and mushroom fairy lights, and coding for the LED strip.
Integrating the lights and enabling them to trigger each other proved to be the most challenging aspect of the project. We spent considerable time reconnecting each light to the Arduino, testing different wires and locations. We wrote code to regulate the order of light flashing. The IKEA desk lamp would remain on when people were present and turn off when the proximity sensor detected a certain distance. The mushroom fairy lights and LED strip would then flash in sequence, and this interaction would automatically halt after five seconds. Shaking the sensor would awaken the lights, and the UWB sensor would detect the movement, triggering all the lights to flash simultaneously.
Content Rating
Is this a good/useful/informative piece of content to include in the project? Have your say!
You must login before you can post a comment. .